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Introduction
NAND flash memory technology differs from NOR flash memory which has dominated the embedded flash 
memory market in the past. Traditional applications for NOR flash memory are code storage and executing in 
place (XIP) in many embedded systems. Historically, NAND flash memory has been used extensively in data 
storage applications such as Solid State Drives (SSD) and flash memory cards. Today, with improvements in 
endurance, cost, and performance, NAND flash memory is being deployed more frequently in code storage 
applications in complex embedded systems.

Parallel NOR flash memory was a popular choice for complex embedded systems because its interface 
contains both address and data buses that enable execute-in-place operations. Execute-in-place capability 
allows an embedded CPU to fetch code directly from a code storage device and execute the code 
immediately. With the emergence of the NOR serial interface (SPI), system designers were able to reduce 
system complexity and cost by reducing the numbers of I/Os, while maintaining system performance.

Most recently, NAND flash memory is employed to further reduce the cost of a complicated embedded 
systems while maintaining the required system performance. However, booting from NAND can be a 
challenge in a complex embedded system. NAND flash is a page-oriented memory device that does not 
inherently support XIP, at least not in the same manner as a typical XIP memory device such as NOR flash. 
The booting procedure must be modified when migrating from NOR flash in order to fulfill the architectural 
constraints of NAND flash memory.

Scope
This document describes a typical sequence of steps and discusses special requirements necessary to boot 
from NAND flash. With a wide variety of CPUs implemented in embedded systems, the operations described 
below may vary. This application note does not specify any protocols of internal/external buses and timing for 
any specific embedded microprocessor but it does describe the Macronix NAND flash memory interface. 
"Table 1.  Macronix NAND Flash" lists Macronix NAND flash memory discussed in this document.

Table 1.  Macronix NAND Flash

Part Number Density Device ID Bus Width Page Size(Bytes)
MX30LF1208AA 512Mb F0h x8 2112 = (2048 + 64 bytes per page)

MX30LF1G08AA 1Gb F1h x8 2112 = (2048 + 64 bytes per page)
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Boot-from-NAND Overview
"Figure1. Boot-from-NAND Stages." shows a typical boot sequence in a complex embedded system.

Figure1. Boot-from-NAND Stages.

Boot Stages

Stage1: SoC Internal ROM Code
After power-on reset or system hardware reset, the embedded CPU will fetch its first code from internal ROM. 
The main function of ROM code is to transfer the bootstrap code from NAND flash memory into SoC internal 
SRAM. The ROM code can detect different hardware settings from I/O or latch information during the reset 
period in order to branch to program code that loads the bootstrap code either from NAND or NOR. In this 
application note, we focus on NAND flash memory with code storage for booting purposes.

Stage2: Bootstrap

In Stage2, we have bootstrap code sitting in internal SRAM and ready to be executed. The main functions 
of bootstrap code are to copy the boot loader code from NAND into DRAM and to configure SoC hardware 
settings for customization purposes.

Stage3: Boot Loader
   
Stage3 has the boot loader residing in DRAM ready for the embedded CPU to execute it for shadowing the 
operating system. The main function of the boot loader is to copy the operating system from the NAND flash 
into DRAM for booting.

Stage4: Operating System
   
The operating system (ex: OS kernel) is in DRAM and is launched to complete the booting process. The 
operating system takes control of the whole system at the completion of Stage 4.

Stage 1
SoC internal ROM code

Stage 2
Bootstrap

Stage 3
Boot Loader

Stage 4
Operating System
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Stage1: SoC Internal ROM Code

After power-on reset or system hardware reset, the embedded CPU will begin executing code from ROM in 
Stage1. The ROM code cannot be modified by the system designer. For security purposes, the, ROM code 
can be written to support Macronix NAND flash by reading the manufacturer and device IDs of the installed 
flash to determine which Macronix NAND flash is being used before proceeding with the boot procedure. After 
a power-on-reset or system-reset is initiated, all registers in the SoC are in their default values. 

The very first ROM code instructions issue the RESET command (FFh) to reset the NAND flash memory 
and waits a tRST time for the NAND flash memory to be ready ("Figure 2: NAND Flash Memory RESET 
Command FFh"). For the value of tRST, please refer to the appropriate Macronix datasheet.

Figure 2: NAND Flash Memory RESET Command FFh

Then ROM code then issues the Read ID command (90h) to read the NAND flash memory manufacture ID 
and device ID ("Figure 3: Read ID Operation") to ensure that the correct NAND flash memory is in place and 
is supported by the ROM code.

Now the ROM code is ready to load the bootstrap code from the NAND data blocks to internal SRAM. Before 
we move forward to load the bootstrap code, we have to understand NAND flash memory characteristics 
such as Bad Block management and ECC schemes for NAND flash physical memory management which are 
not required by NOR flash memory.
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Figure 3: Read ID Operation

Note: The 1st code returned (C2h) is the Macronix manufacturer ID. The 2nd code will be F0h for a 512Mb device or F1h (as shown) for a 
1Gb device. Please refer to the appropriate Macronix datasheet for a detailed definition of the 3rd code and 4th code of the ID table.

ECC and Bad Blocks Management
The ROM code expects bootstrap code to reside in block 0, 1, 2 or 3 of the NAND flash memory. The 
bootstrap image may be duplicated in those 4 blocks for reliability reasons. Macronix NAND flash memory 
block 0 is guaranteed to be good up to 1K cycles with 1bit ECC per 528 bytes. Therefore, in most cases, the 
ROM code will not have to look beyond block 0 for a bootable image.

When programming boot code and the OS into a NAND flash memory, the system programmer must first scan 
for bad blocks and build up a bad block table, which usually resides in block 0 and other duplicate locations 
of the NAND flash memory. The location of the bad block table is defined by the user. Therefore, when ROM 
code transfers bootstrap code into internal SoC SRAM, it also loads the bad block table into SRAM to ensure 
that only good blocks are used when accessing blocks beyond block 0 at a later time.

For those users who do not use all 64 bytes of spare area of each NAND page, the first byte of a spare area 
can be reserved for bad block marking. If the first byte of a spare area in the 1st or 2nd page is not FFh, the 
system designer may consider the “marked” blocks to be a “bad blocks”. Skipping the bad block and moving 
on to the next block and checking that it is good, is a scheme that should be implemented for NAND flash 
devices, if the system designer does not want to build and use a bad block table. Remember not to erase the 
bad blocks, otherwise the system may lose the bad block marking, and be unable to identify an inadvertently 
use the bad blocks in the future.

Macronix NAND flash memories, MX30LF1208AA and MX30LF1G08AA, require 1 bit error correction 
capability per 528 bytes of data (including ECC parity bits). For a 2048 + 64 bytes per page data structure, 
we can divide a page into 4 data sections (section A, B, C, D) and each section can accommodate a 528 
(512 + 16) bytes data unit ("Figure 4: Page Level Code Storage Structure"). A 1 bit error correction capability 
within 528 bytes requires 13 parity bits using the Hamming code ECC algorithm. While programming the code 
image into NAND flash, 13 ECC parity bits for each 512 byte section must be calculated and stored within 16 
bytes of that section’s spare area. Once all 4 sections are done for each page (2048 + 64 bytes per page), 
the programmer continues programming at the next page with the same scheme for NAND flash memory until 
the entire code has been programmed into data blocks successfully. The ECC algorithm can be implemented 
by either hardware or within ROM code depending on the architecture of the SoC.
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Figure 4: Page Level Code Storage Structure

After the copying process is done, the embedded CPU will jump to the internal SRAM address where the first 
byte of bootstrap cade was stored by ROM code.

ECC Error Handing During Bootstrap Copy Process

In the event an un-correctable ECC error (e.g. 2 or more bits of errors) is found during the copy process, the 
duplicate bootstrap code image stored in a different data block can be used by the embedded CPU to attempt 
a recover from this error.  For example, if there is a block 0 reading error (a very rare event), ROM code 
can search the next data block for a valid bootstrap image and attempt to load it into SRAM. Error handling 
requires technical skills that are beyond the scope of this application note and should be handled very 
carefully to prevent any glitches during the boot process.
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Bootstrap Code Shadowing within SoC SRAM
After NAND flash memory has been verified and a bad block table has been established, the process of 
copying (shadowing) from NAND flash memory to internal SRAM starts ("Figure 5: Shadowing Bootstrap 
Code from NAND Flash Memory to Internal SRAM").

Figure 5: Shadowing Bootstrap Code from NAND Flash Memory to Internal SRAM
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Stage 2: Bootstrap
At the onset of the 2nd stage of the boot process, bootstrap code has already been placed in the appropriate 
SRAM location for the embedded CPU to execute for the next step. In most cases, the bootstrap should 
include all information needed to support the current embedded CPU, including PLL clock frequency, 
essential SoC configuration registers, NAND flash driver, and memory management in embedded system, 
etc.

In reference to "Figure 4: Page Level Code Storage Structure", note that the NAND flash memory data 
programming structure is different from NOR flash memory due to the ECC function and parity bits. For 
reliability reasons, the bootstrap image can be duplicated in other good blocks such as the first four good 
blocks of the NAND flash device.

After SoC configuration is done, shadowing Boot Loader from NAND flash to DRAM is the next major 
bootstrap task ("Figure 6: Shadowing Boot Loader from NAND Flash to DRAM"). The embedded CPU will 
jump to the appropriate DRAM address to execute the code once the Boot Loader shadowing task is done.

Figure 6: Shadowing Boot Loader from NAND Flash to DRAM
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Stage 3: Boot Loader
The boot process of Stage 3 is heavily dependent on the OS. Usually the boot loader shadows the OS 
kernel first before completing its boot process. There are a number of factors the boot loader should take 
into account such as memory mapping (to support boot-from-NAND), NAND flash operations supported 
(so that it can read and write to the flash memory device), and environment data storage location (within a 
single block), etc. The Boot Loader shadows OS kernel code from NAND flash memory to DRAM ("Figure 7: 
Shadowing OS Kernel from NAND Flash to DRAM"). The embedded MCU (Memory Control Unit) will jump to 
the shadowing OS kernel in DRAM after the boot loader completes its task.

Figure 7: Shadowing OS Kernel from NAND Flash to DRAM
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Stage 4: Operating System
The final stage of the boot process starts with OS kernel initial execution within DRAM. From this stage, the 
OS begins to control the whole system ("Figure 8: OS Kernel Process Taking System Control"). The SoC 
internal SRAM is fully utilized by the OS Kernel. The boot process is complete and ready for user applications 
after the final stage is finished.

Figure 8: OS Kernel Process Taking System Control
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Combination of Bootstrap and Boot Loader
There are some embedded systems that focus on a narrow sets of applications with limited interrupts, tasks 
and events. The bootstrap and boot loader can be combined as one unit in the SoC’s internal SRAM, if the 
size of the combined code will fit in the SRAM. In this way, the system designer can simplify the boot process 
and load the OS Kernel to DRAM directly, after the boot loader has successfully beencopied into SRAM ("Figure 
9: Combined Bootstrap and Boot Loader Operation").

Figure 9: Combined Bootstrap and Boot Loader Operation
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Maximum Reliability of Code in NAND Flash Memory
Typically, NAND flash memory is not as reliable as NOR flash memory. NAND flash memory has higher 
raw bit errors rates (RBER) and needs error correction codes (ECC) to reduce it. NAND devices also suffer 
internal Read/Write disturbance effects that reduce data retention time. To maximize the reliability of code, 
system designers should implement some of the following recommendations:
● To reduce the numbers of reads from a NAND device, copy the code into SRAM/DRAM if the code 

needs to be repeatedly accessed. This will reduce the possibility of read disturbance errors in NAND 
flash memory.

● Always enable the ECC function within the SoC for the NAND flash interface. Even a single bad bit in 
the code can cause a system failure, so error correction should be maximized in code storage areas of 
NAND flash memory.

● When programming code into NAND flash memory, it is imperative to perform a read-verify operation 
to compare the contents in NAND flash against the original binary image.

● To avoid multiple programming operations within a single page, program each page in its entirety using 
a single program operation. This will reduce the possibility of program disturb data degradation.
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Summary
To take advantage of NAND’s low cost and high performance, more frequently, embedded systems are
adopting NAND as the boot device. By employing Macronix’s SLC NAND flash memory and implementation
recommendations, system designers can achieve a reliable boot sequence from their Macronix
NAND flash memory.

Revision History
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MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.

Except for customized products which have been expressly identified in the applicable agreement, Macronix's products 
are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applica-
tions only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe 
property damages. In the event Macronix products are used in contradicted to their target usage above, the buyer shall 
take any and all actions to ensure said Macronix's product qualified for its actual use in accordance with the applicable 
laws and regulations; and Macronix as well as it’s suppliers and/or distributors shall be released from any and all liabil-
ity arisen therefrom.

Copyright© Macronix International Co., Ltd. 2013. All rights reserved, including the trademarks and tradename thereof, 
such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit, NBiit, Macronix NBit, eLite-
Flash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE, 
Macronix MAP, Rich Au dio, Rich Book, Rich TV, and FitCAM. The names and brands of third party referred thereto (if 
any) are for identification purposes only.

For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com
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