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Introduction
NAND Flash memory has been widely adopted in Embedded systems as a memory of choice. NAND Flash 
is often used as a NOR Flash replacement for cost reasons (and sometimes also for performance reasons). 
However, NOR and NAND Flash have architectural and reliability differences that complicate system 
migration from NOR to NAND.

This technical note will introduce NAND Flash memory technology with a focus on Single Level Cell (SLC) 
products which are predominantly used in embedded systems.

NAND Flash and NOR Flash Overview
NAND and NOR Flash differ in terms of their basic use due to their architectural characteristics. Those 
differences are analyzed in this section and are summarized in "Table 1.  NAND SLC vs. NOR Typical 
Characteristics". 

NOR and NAND Flash memory are both available in densities ranging from 512Mb to 2Gb and thus either 
memory type can be used in embedded systems when their memory requirement falls within this range. 
Unfortunately, the characteristics of the two memory types don’t allow simple switching from one to the other. 

Cost is usually the primary driving factor in the design choice; however, it is not unusual that some NAND 
based systems retain a small NOR Flash memory for booting or storing parameters to keep the system 
design simple. 

Random Read Latency is one of the fundamental differences between Parallel NOR and SLC NAND. 
Read latency is much longer in NAND than NOR making NAND unsuitable for direct code execution. A 
DRAM buffer is required in NAND systems to shadow the code. However, because SLC NAND can be 
read and programmed in pages of 512B, 2KB or 4KB, the overall data throughput can be very high. NAND 
programming throughput is significantly higher than that of NOR memory which makes it a good choice 
for use in data storage applications. Erase speed is also very fast with NAND compared to NOR. However 
code storage applications typically do not need fast write and erase speeds as the memory code is seldom 
updated.

Table 1.  NAND SLC vs. NOR Typical Characteristics

Characteristic NOR SLC NAND
Density 1Mb -2Gb 512Mb – 8Gb

Random Read Latency 0.1usNote 1 25usNote 2

Sustained Read Speed (x8 I/O) 30MB/s 30MB/s

Read Page buffer 16BNote 1 2048BNote 2

Random Write speed 11usNote 1 250usNote 2

Write page 64BNote 1 2048BNote 2

Sustained Write Throughput 0.5MB/s 8MB/s

Erase speed 0.6sNote 1 2msNote 2

Unit Cell area 10F2 4F2

Note 1: MX29GL512F Note 2: MX30LF1G08AA
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Besides the advantage in terms of area (due to the NAND cell structure), NAND technology is more easily 
scaled (suitable for shrinking to more advanced technology nodes). A technology roadmap for NAND and 
NOR is shown in "Table 2. NAND vs. NOR Technology Roadmap (ITRS)". The forecast is based on the 
hypothesis that at least two suppliers will be in production with the given technology. The technology shown 
for NAND refers to high density (MLC) products. SLC NAND products are usually produced by employing one 
or two technology nodes behind the mainstream technology. Moreover, one can readily observe that very few 
major industry Flash suppliers have any plan to migrate below 45nm for NOR in the coming years.

Table 2. NAND vs. NOR Technology Roadmap (ITRS)

The behavioral and performance differences between NAND and NOR are primarily due to their basic cell 
array structure. The NAND array basic structure is composed of a group of memory elements - called a 
“string” - that are connected in series. Each string is made of 32 or 64 cells tightly packed and each string is 
connected to the top wiring leading to the Read and IO circuits. In NOR architecture each couple of cells must 
be connected to the top wiring (requiring at least one metal to diffusion contact for every pair of cells). As a 
consequence, the area efficiency of NAND is greater than that of NOR architecture as illustrated in "Figure 1. 
NAND vs. NOR Architecture".  The resulting equivalent unit cell area is much smaller for NAND, about 60% 
smaller than NOR. (Note: the memory device also includes circuits for reading and writing that must be taken 
into account when calculating the overall bit density for a fair comparison of area efficiency between SLC 
NAND and NOR).

Figure 1. NAND vs. NOR Architecture
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NAND  (nm) 22 20 18 17 15

NOR  (nm) 65 55 45 45 45

Macronix NAND roadmap focuses on the embedded applications. Therefore the technology roadmap is 
scaled according the density, long term supply and reliability needs of this market.

Source: www.itrs.net
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SLC and MLC NAND
With Multi Level Cell (MLC) technology, it is possible to obtain a lower cost memory at the cost of 
performance and reliability. The MLC approach consists of storing 2 bits in a single cell instead of only 1 bit as 
in SLC NAND. As shown in "Figure 2. SLC and MLC NAND Architecture", this is achieved by further dividing 
the cell threshold to create additional “levels”. MLC 2-bit per cell is also referred to as Four-level cell; not to be 
confused with 4-bit per cell. 

Figure 2. SLC and MLC NAND Architecture

In "Table 3. SLC vs. MLC NAND", the main differences between SLC and MLC NAND are summarized. The 
key differences are reliability and endurance and the associated ECC requirements. SLC is more suitable for 
code and critical applications for industrial use. A much small density range is available in the SLC version.

Table 3. SLC vs. MLC NAND
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SLC MLC
Density 512Mb – 8Gb 8Gb-64Gb

Tprog (Page Program Time) 250us 900us

Tread (1st Byte Read Latency) 25us 50us

NOP (No Partial Prgm in Pg) 4 1

Endurance (W/E cycles) 100K 5K

ECC bits 1 - 8+ 4 - 20+

Macronix’s Floating Gate NAND Flash offering focuses only on SLC NAND for providing reliable storage 
solutions for Embedded applications.
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Advantages and Disadvantages of NAND vs. NOR in Embedded Applications
There are both advantages and disadvantages when using NAND instead of NOR in embedded applications. 
Trade-offs must be made by system designers when selecting NAND or NOR as things like Cost-per-Bit must 
be weighed against the application requirements and the needs of the specific system architecture.

Advantages of NAND

Low Cost. 
The low cost per bit of NAND is an advantage. Because the cell array is arranged in serial, the NAND array is 
much denser than the NOR array resulting in a much lower cost per bit. Maxcronix is not only focused on low 
cost per bit, but on providing our customers with a stable long term supply of SLC NAND.

Fast Write Speed. 
NAND write speed is definitely an advantage when large blocks of data needs to be written quickly. Cache 
Programming and Dual Plane operation offer a way to further enhance programming throughput.

Pin count. 
Pin count is an advantage for NAND if the comparison is made with respect to parallel NOR. NAND requires 
15 pins regardless of the density while standard NOR can require 40 pins or more (depending on the density). 
When compared with serial NOR, NAND Flash may not have a pin count advantage. For example, a Quad-
IO Serial Flash pin count is actually smaller than that of NAND. NAND flash with an SPI interface has recently 
emerged, but so far has not been widely adopted. 

Disadvantages of NAND

Longer Random Read latency. 
The long latency performing random reads makes NAND ill suited for direct code execution (XIP). Code will 
be downloaded from NAND to DRAM and executed from there. Therefore, in the total system cost evaluation, 
the DRAM cost must also be considered. 

ECC / Reliability. 
In general, Raw NAND reliability is lower than that of NOR, and one must pay attention that ECC is handled 
correctly to restore an appropriate reliability level. NAND requires ECC and the amount of ECC required must 
be handled either by the controller or software. Sometimes when a technology migration happens, NAND 
ECC requirements change and the controller chip must be designed to accommodate the new requirements. 
In some cases the ECC is handled internally by the NAND itself with special “ECC free” solutions.

Bad Blocks.
NOR is considered a “perfect memory” whereas NAND might contain BAD blocks when shipped from the 
factory. BAD blocks must be handled at the system level. 

Small Supply of Low Density NAND.
The majority of NAND suppliers are focusing their production and manufacturing on the higher density (MLC) 
NAND. As a result, the lower density SLC NAND is prone to shortages, price fluctuations, and EOL (End of 
Life) notices. Macronix’s NAND strategy focuses on the lower density SLC NAND to assure its customers a 
stable supply.

In the following sections each advantage and disadvantage is described in more details.
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NOR and NAND Interface

The NOR interface traditionally has an Address and Data bus. As NOR density increases, the pin count 
also increases significantly because of the higher number of address lines needed. Therefore, Address and 
Data Multiplexed NOR devices are also available in order to cope with the increased pin count. In addition to 
(Parallel) NOR, there is also the option of using NOR with a Serial Peripheral Interface (SPI). NOR with a SPI 
interface (with Single, Dual or Quad I/O) has a very low signal count and is widely available on the market, 
but is predominantly used for storing code. Execution in Place (XiP) of the code with SPI (or QSPI) NOR is 
possible, but the system will require the flash to be clocked at a relatively high frequency and a data cache 
inside the controller may also be needed in order to feed the microprocessor with the data at a higher rate.

The standard NAND interface typically has a multiplexed 8-bit or 16-bit data IO bus. Address, Command and 
Data input or output is performed on the I/O bus. 

Figure 3. NAND and NOR Interface Logic Diagram (NAND MX30LF1G and NOR MX68GL1G)
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Table 4. NAND Interface Signals (MX30LF1G)

Table 5. Parallel NOR Interface Signals (MX68GL1G)

Signal Type Description
ALE Input Address Latch Enable. Latch Address from I/O

CE# Input Chip Enable. Selects and enables the chip

CLE Input Command Latch Enable. Latch a Command from I/O

RE# Input Read Enable. Clocks data out from internal cache to I/O

WE# Input Write Enable#. Clocks Command, Address, and Data from I/O to internal registers

WP# Input Write Protect. Disables Program or Erase operations

I/O[7:0]  x8, x16 Input/Output Data Input / Output. Input Command, Address, and Data to the memory, Output Data from the memory

R/B# Output Ready/Busy. Indicates a Program or Erase operation is on going. It is usually an Open Drain pin

Signal Type Description
A [25:0] Input Address Bus

CE# Input Chip Enable. Selects and enable the chip

WE# Input Write Enable 

OE# Input Output Enable

WP# Input Write Protect. Disable Program or Erase 

I/O[7:0]  x8, x16 Input/Output Data Input / Output

RESET# Input Reset

R/B# Output Ready Busy. Indicates a Program or Erase operation is on going. 
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"Table 6. Signal Pin Count for NAND and NOR Interfaces (1Gb)" compares the signal pin count of a 1Gb 
NAND device with a Parallel Page mode 1Gb NOR . With such a big memory size, the address lines required 
cause the pin count to increase significantly for the NOR. To make the comparison complete, a solution 
employing two serial NOR devices (so as to achieve an 8 bit I/O data bus width) is also shown.

Table 6. Signal Pin Count for NAND and NOR Interfaces (1Gb)

NAND NOR (Parallel) 2 x NOR (QSPI)
IO [7:0] A[26:0] 2 x IO[3:0]

CE# IO[7:0] CLK

RE# CE# 2 x CE#

WE# OE#

CLE WE#

ALE RESET#

WP# WP#

R/B#

Pin Count: 15 Pin Count: 40 Pin Count: 11

Read and Program Operations

Read and Program operations in SLC NAND are performed on a Page basis. Page length can be 512 Bytes, 
often referred to as “small page”, or 2KB often referred to as “large page”, or even 4KB. The most common 
SLC NAND uses 2KB pages. In this document references to pages will mean “large page” NAND unless 
specified differently.

Each NAND Page has extended addressable space often called the “spare area” or “out of bound (OOB) 
area used to store ECC parity and other metadata. For a 2KB page NAND, the spare area is usually 64 bytes. 
Therefore, each page actually has 2112 Bytes of addressable space.

NAND Flash has a built-in internal Data Register as shown in "Figure 4. NAND Registers". The Data register 
is as large as the NAND page (e.g. 2112 Bytes). The Data Register is loaded with data before executing a 
Program operation or is used to output the content of the memory after a Read operation is performed. When 
a Program operation is started, the Data Register content is programmed inside the NAND memory array 
using external data. A Program operation takes about 250us. When a Read Operation is started, the Data 
Register is loaded with data from the NAND memory array. A Read operation takes about 25us.

The access to the Data register can be random and can start from any address location. The read or write 
cycle time to/from the Data register is as fast as 20ns in Macronix’s SLC NAND MX30LFxG08AB. 

In addition to the Data Register, a Cache Register is also available in Macronix NAND Products. The Cache 
Register has the same size as the Data Register and enhances Read and Program throughput by means 
of data pipelining. Specific commands enable Cache operations (either Read or Program). During Cache 
Program it is possible to load new program data into the Cache Register while the previous data is being 
programmed into the array from the Data Register thus hiding the program latency. During a Read Cache 
operation it is possible to download the data from the Cache Register while the new data is retrieved from the 
NAND memory array and loaded into the Data Register thus hiding the Read latency. 
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Figure 4. NAND Registers
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NOR Flash also uses Registers to output the data, but the size of the buffer is very small (e.g. 16 to 32 Bytes) 
compared to NAND. However the Read register can be loaded with a very short latency (e.g. 100 ns). A Write 
Buffer Register is also available in order to optimize the programming throughput in NOR, but the size is also 
very small (e.g. 64 to 256 Bytes) compared to NAND. The reason for smaller sized NOR registers is due to 
the different Read and Programming methods used by the two technologies.

Software

From a software point of view, NAND Flash memory is much more complex than NOR. Even reading data 
from NAND will require a proper memory software driver. The reason for NAND complexity is mainly due to 
Bad Blocks and ECC management, if it is not supported by hardware. Wear leveling - a procedure to evenly 
spread the erase cycles over multiple blocks - is also a necessary practice when designing with NAND if there 
are frequent erase/program operations. Other important functions may also need to be managed in software 
when using Flash technologies. For example, it is important to implement proper data integrity protection 
to handle when a power loss event occurs while a Program operation or File Management operation is in 
progress. Bad Blocks, Wear Leveling and ECC concepts will be briefly introduced in the next sections.

"Figure 5. Example of Software layer in NAND in Symbian a) and Linux with MTD b)" illustrates software 
layers in an Operating System using NAND Flash. Flash Translation Layer (FTL) may implement Wear 
leveling algorithms and Bad Block Management. With the Linux Operating System, MTD (Memory Technology 
Devices) may provide an abstraction of flash devices hiding from the user many aspects specific to flash 
technologies.

Figure 5. Example of Software layer in NAND in Symbian a) and Linux with MTD b)
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Error Correction Codes (ECC)

NAND requires Error Correction Code in order to obtain reliable operation. ECC algorithms commonly 
implemented are Hamming for 1-bit correction and BCH for more than 1-bit correction. It is a common 
practice to refer the correction capability as the error bit number that can be corrected over a 512B chunk of 
data even if the real implementation operates on larger data blocks. The ECC algorithms can be implemented 
either in software or in hardware by the NAND controller. Very often the NAND memory controller in the host 
has the built-in ECC correction capability and must be configured to match properly with the NAND type used 
in the system. 

SLC NAND traditionally required 1-bit correction over 512 Bytes (more properly 1-bit correction over 528 
Bytes because parity bits also need to be protected). With more advanced technologies, such as 40nm, the 
correction capability requirement has increased. The trend for ECC requirement is shown in Figure 6. SLC 
NAND used 1-bit ECC until 43nm generation, but the requirement has been raised to 4-bit ECC per 512B of 
data for the 3x nm technology range. Moving further to 2x nm, the ECC required to obtain a reliable operation, 
without specification de-rating, has increased to 8-bit and higher. 

MLC NAND requires more powerful correction capability than SLC NAND and the gap increases as 
technology feature size decreases. As a consequence, it is often a very complicated, if not impossible task   
to design with MLC in Embedded systems. 

Embedded applications that require a long life cycle compared to consumer applications, must be designed 
with this trend in mind. The Macronix SLC NAND product roadmap and related ECC requirements are 
designed in order to provide customers with long term support for a long application life cycle.

Figure 6. ECC requirements trend
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The required parity bits for ECC implementation are stored in the extra memory space offered by NAND 
devices, called Spare Area or also Out Of Bound (OOB) Area. The Spare Area is an addressable space that is 
an extension of the page with a size at least 1/32 of the standard page size. For example, a 2KB page NAND 
Flash usually has additional 64B of spare addressable area so that the total available page size is actually 
2112B. The required parity bits must fit in the OOB area as will be explained later. For 1-bit error correction 
only 3 Bytes are used for ECC parity.
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The data and ECC parity organization is specific to the software/hardware implementation. "Figure 7. Spare 
Area Use for ECC Correction in NAND with a 2112Byte Page Size" shows three examples for data and parity 
organization in a 2048+64 page NAND and ECC based on 512B chunks. In the first case a) the ECC parity 
bits are actually stored inside the Spare area but in case b) and c) any section of the entire page may contain 
the ECC parity bits. This may have other implications: for example, the original bad block marking - stored 
at the factory in the 64B spare area - will be overwritten when writing data. Therefore the original factory bad 
block marking should be remapped or handled properly - as discussed in the Bad Block section - in order to 
avoid being overwritten by the File System. 

Figure 7. Spare Area Use for ECC Correction in NAND with a 2112Byte Page Size

The 64B Spare area is more than enough to implement a 1-bit correction scheme over a 512B data chunk in 
a 2KB page NAND using a Hamming code as shown in "Table 7. ECC Correction Schemes over 512B and 
OOB usage in NAND (2KB Page)". However, with the NAND products based on more advanced technology 
nodes, a larger Spare area might be needed to accommodate a stronger ECC implementation. As a result, 
products manufactured using more advanced technologies are also offered with larger page and larger Spare 
areas. The larger Spare area allows stronger ECC implementations and still leaves some space available 
for system metadata. "Table 7. ECC Correction Schemes over 512B and OOB usage in NAND (2KB Page)" 
shows that using BCH codes to correct 4-bit errors on a 512KB data chunk would require about 44% of the 
Spare area resources. A stronger implementation to cover 8-bit errors would still use only 81% of the spare 
area. For 10-bit errors, the 64B Spare area will become insufficient and smarter implementations must be 
employed in order to fit into the available space. In general, when a higher number bit correction is required, 
the correction algorithm must operate on a larger data chunk such as 1KB to gain efficiency (not shown in 
"Table 7. ECC Correction Schemes over 512B and OOB usage in NAND (2KB Page)"). 

Table 7. ECC Correction Schemes over 512B and OOB usage in NAND (2KB Page)

 

Data 1 Data 2 Data 3 Data 4 S1 S2 S3 S4

512B 16B

2048B Page 64B Spare

Data 1 Data 2 Data 3 Data 4S1 S2 S3 S4

512B 16B

a)

b)

Data 1 S1

1024B 32B

c) Data 2 S2

Hamming BCH
Bit correction capability 
(calculated over 512B)

Parity bits
Spare usage          
(64B spare)

Parity bits 
Spare usage          
(64B spare)

1 13 bit 13% 13 bit 13%
4 - - 52 bit 44%
8 - - 104 bit 81%

10 - - 130 bit -
14 - - 182 bit -
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Due to routine data management in NAND Flash (wear leveling, garbage collection), sometimes data is 
moved to a fresh block while a particular block is being erased and cleaned up. When data copy is done, it 
is necessary to recalculate the ECC and eventually correct the data before writing back to the new block to 
avoid any errors being accumulated. Data management operations are performed by the controller or the 
system software layer.

Macronix focuses on long term support of its SLC NAND Flash families. ECC free NAND solutions are also 
available. This strategy allows the controller chip and system makers sufficient time to update their product 
lines independently of frequent changes in the mainstream NAND market.

Bad Blocks

Another unique NAND characteristic is the presence of Bad Blocks (BB). Bad Blocks may have errors that 
are not correctable with the use of the minimum ECC requirement. These blocks are marked as Bad from the 
factory and must not be used. A maximum number of Bad Blocks is guaranteed on the datasheet. 

The Bad Blocks have a specific marking usually written in the spare area of the first page or second page of 
the block. Since every device may have different BB marking address locations, the software must handle 
Bad Blocks properly according to the device. 

Bad Blocks are managed by means of an indexed Bad Block Table (BBT). BBT can be built by simply reading 
the BB marking of all blocks in the device. If the BBT table is stored in SRAM, it must be rebuilt every time the 
system boots up. Alternatively, the BB table can also be stored in a good Flash Block (usually in the upper 
part of the NAND) so that it is not necessary to rebuild it every time the system boots up. Having the BBT 
residing in Flash has many advantages despite the more complex implementation. For example, the spare 
area will be free to be used with every ECC and data management implementation. If the BBT is stored in 
Flash, then it is necessary to reserve some blocks for this purpose (for example the last four blocks). In fact 
it is not always possible to choose the same block for storing the BBT as the BB map changes from device to 
device. 
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Every time a BB is addressed, the proper software layer (depending on the SW implementation) will use 
the BBT to redirect the access to a good block. Each time a Block fails in the application, the Block may be 
retired and marked as Bad. The Bad Block table will be updated accordingly.

The BBT must be stored in a good block and the SW handling Bad Blocks must be able to find the BBT 
location every time it boots up. NAND Flash Blocks can wear out and so can the Block where the BBT is 
stored. Therefore the BBT must be moved to a different good Block.  

Figure 8. Bad Block Table Indexing
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Wear Leveling

Wear Leveling is a technique that extends the life cycle of a NAND memory device used for data storage. 
There is a limitation on the number of program/erase cycles for each block in a NAND flash. In addition, a 
highly cycled block will see its reliability reduced in terms of data retention. If certain data locations are written 
more frequently than others, then the blocks involved will be cycled more than average, and eventually wear 
out. The purpose of wear leveling is to remap the data blocks in order to average out the number of cycles for 
every block in the device. 

Wear leveling consists of remapping the Logical Block Address (LBA) from the host into the Physical Block 
Address (PBA) of a Flash device. The Software or the NAND controller will store a Remap Table that redirects 
the LBA from the host to PBA as shown in example of Figure 9.

Wear leveling can be implemented either in a very simple form or in more advanced forms. The choice for the 
type of wear leveling depends on the application. Two common methods of implementing wear leveling are 
Static Wear leveling or Dynamic Wear leveling. 



12P/N: AN0269 REV. 2, FEB. 20, 2014

TECHNICAL NOTE

In Code storage applications, most of the memory contains code that is seldom updated: we refer to this type 
of data as Static. Only a small section of the NAND device might be used for storing files, parameters or data 
and we will refer it as Dynamic data.

In Dynamic Wear leveling when a block needs to be updated, the new data is written into a free block with the 
lowest erase count and the Map Table is updated accordingly. The block containing the older block can be 
erased and made free for new data. In this scenario it might happen that some data that is not updated will 
remain in the same block for a long time.

In Static Wear leveling, the purpose is to keep the Program/Erase count uniform among all the blocks. 
Referring to the previous example, even if data does not need to be updated, it might be moved to another 
block in order to achieve a uniform cycle count over all blocks. The pure Static Wear Leveling approach might 
also move Code data - that in principle does not need to be moved - in order to average the cycle count over 
the entire NAND Flash. For this reason software architects may decide to apply Static Wear Leveling only to 
a portion of the addressing space.

Static Wear leveling is much more complex to handle than Dynamic Wear leveling but it allows us to achieve 
the maximum endurance. However, not all the applications may require Static Wear Leveling. The best choice 
depends on the Static data and Dynamic data characteristics and requirements. 

Figure 9. Wear leveling Block Remapping
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Boot from NAND

SLC NAND normally guarantees that Block 0 is free of errors so that the system can always boot from this 
area. However, when booting from NAND, the software might need to consider bad blocks if the boot code is 
too large for Block 0 to accommodate.

Macronix NAND SLC Flash guarantees the validity of Block 0. This means that applications can always boot 
from Block 0. In some Macronix NAND products, a lower ECC strength is required for Block 0 compared 
to other blocks because the Block0 is guaranteed to be cycled few times. However, it is suggested that, if 
possible, the strongest ECC be implemented on Block 0 when booting so that Block 0 will be treated as any 
other good block.

Macronix NAND also implements a Block 0 auto load feature. The first page of Block 0 is automatically 
loaded into the Cache Registers at power-on and can be directly loaded without the need of addressing it 
first.

Because NAND is not directly executable, it is necessary to load a first stage boot to a SRAM/DRAM for 
execution. The controller has to identify the NAND type before executing the boot-loading code. If the 
controller has a fixed boot-loading sequence (hard coded or in ROM), it is important that the future NAND 
products are backward compatible with all aspects related to boot-loading.

Some application/controllers will boot without ECC correction on the NAND data. Macronix NAND is tested 
to guarantee the maximum reliability, but in this case, however, it is suggested to use the maximum ECC 
correction to guarantee error-free operation. 

Conclusion

NAND Flash memory is becoming the memory of choice in embedded systems and code storage 
applications. This document introduces NAND Flash memory and discusses the advantages of its use in 
embedded applications. A comparison with NOR Flash memory is also provided.
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MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.

Except for customized products which have been expressly identified in the applicable agreement, Macronix's products 
are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applica-
tions only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe 
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