
REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 1 / 18

Macronix Proprietary

SPI-NAND & Host-Side ECC in Linux – ECC

engine Framework

This document firstly introduces the emergence of SPI-NAND devices,

the motivation of offloading ECC to host side, and briefly describe the ECC

engine framework for generic NAND devices in the Linux kernel v5.11~, and

finally we demonstrate how to evaluate SPI-NAND with the generic ECC

engine framework on the Xilinx ZYNQ platform.

Table of Contents

1. Introduction .. 1

2. Most Effective Way for ECC Handling ... 2

2.1 What is ECC? ... 2

2.2 The Operation of Write/Read with ECC ... 3

2.3 Why Offloading ECC to Host-side? .. 4

3. SPI-NAND & ECC Engine Framework in Linux .. 8

3.1 Introduce the SPI-NAND & ECC Framework ... 8

3.2 Source Code Structure ... 9

3.3 Initialization flow of SPI-NAND + ECC framework ... 10

4. Evaluation .. 13

4.1 Evaluation Environment ... 13

4.2 Evaluation Method .. 14

4.3 Evaluation Results .. 15

5. Conclusion ... 17

6. Reference .. 18

Revision History ... 18

1. Introduction

The emergence of SPI-NAND devices, system designers can use the

same hardware to switch from NOR to NAND instead of completely

redesigning their systems for parallel NAND (i.e.: raw NAND). Macronix

believes that the future direction of applications using SPI-NAND will

eventually requires the host to manage ECC, not flash device, which will be

the focus of this article.

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 2 / 18

Macronix Proprietary

Three factors are driving the design from NOR to NAND [1][3], as well as

the emerging SPI-NAND trend:

• Cost:

Primarily due to architectural differences, NAND arrays are ~60%

smaller than NOR arrays on the same process node. Compared with

NOR, flash memory can also benefit from the ability to shrink to a lower

geometric size. NAND can support higher density at a lower cost.

• Performance:

Flash memory is typically used to store code that is downloaded to

RAM for execution when the system is booted. This is called storing

and downloading applications. Although the read performance of

NAND is slower than NOR, it is sufficient for these store and download

applications.

• Ease of use:

Since SPI-NAND devices have the same pin layout as SPI-NOR,

there is no need to change the PCB layout.

NAND flash device is cheap and inherently unstable, so it must have

ECC (Error-Correcting Code) function to ensure its data integrity. Later in this

section, we also discuss the challenges of using SPI-NAND with an on-die

ECC versus the flexibility of SPI-NAND with a host-based ECC.

2. Most Effective Way for ECC Handling

2.1 What is ECC?

ECC (Error-Correcting Code) encodes the data so that the decoder can

identify and correct errors in the data. Usually, the data is encoded by adding

many redundant bits to the data. When the original data is reconstructed, the

decoder checks the encoded message to check if there are any errors.

A NAND flash with ECC function has an error when accessing data, and

the ECC will automatically detect and repair the error to keep the data in

normal operation.

Each page of NAND corresponds to an area called the spare area. In

Linux systems, it is generally referred to as the OOB (Out of band) area. This

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 3 / 18

Macronix Proprietary

area was originally based on the hardware characteristics of NAND flash: data

reads and writes.

NAND is more prone to errors, so in order to ensure that the data is

correct, there must be a corresponding detection and error correction

mechanism. This mechanism is called ECC, so an additional area was

designed to hold the checksum value of the data. read and write operations of

the OOB are generally performed together with page operations, that is, when

the page is read and written, the OOB is read and written accordingly.

The following is a brief description of the NAND flash ECC algorithms [7]

that are commonly used and are also available in Linux:

1. Hamming

• Very popular with stronger SLC NAND chips.

• Efficiently corrects 1-bit error, and detects up to 2 bit errors per

chunk.

• Most of the raw NAND controllers have embedded a

H/W Hamming ECC engine.

2. BCH

• Very robust and flexible: suitable for almost any kind of (NAND)

requirements.

• Adaptable to any chunk size at almost any strength.

• Very good ratio overhead/correction capability.

• Limited to available out-of-band areas only.

• The read operation is almost 10 times more complex than the

write operation.

2.2 The Operation of Write/Read with ECC

Let's look at the steps of Write/Read operation with ECC [7]:

Write operation:

1. The SPI host controller provides a chunk of data to ECC engine (there

are multiple chunks contained in one page).

2. The ECC engine processes the chunk and generates ECC check bytes,

and stores the check bytes in the OOB area.

3. Repeat this operation for all the data chunks contained in the page.

4. Write the entire page to the NAND.

Read operation:

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 4 / 18

Macronix Proprietary

1. Main data and ECC bytes are retrieved.

2. The ECC engine processes all the available data, chunk after chunk, to

detect/correct the bit errors.

3. Return the original data and report ECC status

2.3 Why Offloading ECC to Host-side?

Let's look at the design of SPI-NAND. SPI-NAND devices are based on a

standard raw NAND die with additional control logic to emulate the SPI and

handle ECC.

This is typically achieved in one of two ways [1]:

• By adding the control logic under NAND device itself, that is a

monolithic die, which will increase the die size and the cost.

• By stacking a controller chip on the NAND die, making it a multi-chip

solution. The multi-chip package has a cost adder, so it is generally

more expensive than a monolithic solution.

However, in order to get the most cost-effective SPI-NAND solution, there

is a third option: We can offload the H/W ECC engine from the NAND devices,

just like a raw NAND, and shift it to the host-side(Includes H/W ECC engine

embedded in host controller and SoC/CPU with S/W ECC engine).

A typical 8-bit ECC engine can be implemented with roughly 50K additional

gates, and for an entry-level host (MCU or SoC) this is a trivial amount of

gates. By adding the ECC engine on the host, the host cost may go up slightly,

but it will be much lower than the die size impact to a NAND device with on-

die ECC.

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 5 / 18

Macronix Proprietary

Many designs are based on a store and download architecture

(shadowing code form NAND flash to RAM) [2]. This means that the system

cannot execute code directly from NAND flash (XIP), so it reads code from

NAND to DRAM and executes it from DRAM.

Assuming all devices are running at similar clock speeds, NOR flash has

the fastest read throughput at about 66 MB/sec. The two bars on the right

illustrate the read performance of NAND with on-die ECC, where the NAND

device calculates the ECC before reading the data. this NAND architecture is

the slowest and can reach about 27 MB/sec, which is 60% lower than NOR.

However, if the ECC calculation is performed by the host, this read speed can

be increased to 56MB/sec, which is very similar to the read performance of

NOR flash.

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 6 / 18

Macronix Proprietary

Bit flipping may occur during NAND read or programming operations. An

additional benefit of host-based ECC is the ability to use stronger ECC and to

extend the life of the NAND device. When using NAND with on-die ECC, the

device operates with a fixed level of ECC, for example, 8-bit error correction.

However, if error correction is performed by the host, the host may have the

ability to support multiple levels of ECC.

By using stronger ECC, (e.g., 12-bit vs. 8-bit), the NAND device will be

able to tolerate more bit scrambling before the data needs to be flushed or

rewritten. This means that NAND will perform fewer program erase cycles

and ultimately experience a longer lifetime.

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 7 / 18

Macronix Proprietary

By offloading the ECC function to the host side, the MCU will absorb

some additional cost. A typical MCU may have about 3 million gates. A BCH

8-bit ECC engine requires about 50,000 gates to implement, which is about a

1.7% increase in gate count [1][3]. If we add ECC engines to NAND, this

impact on the chip size of the MCU will be much smaller than the impact on

the NAND IC. As mentioned earlier, there are also two types of raw NAND,

with and without on-die ECC. however, host-based ECC is the primary error

correction method for handling raw NAND.

Therefore, in the short term, we see a need for NAND with on-die ECC to

support the migration from SPI-NOR to SPI-NAND, but as applications evolve

and the serial NAND market matures, we see a growing need for lower cost

solutions with better performance and longer life. The best way to support

these requirements is through a host with a built-in ECC engine.

In the raw NAND market, most vendors support the ONFI standard. For

SPI-NAND, there is no such standard, which can lead to differences in

specifications between suppliers.

For example, each vendor may require 8-bit ECC error correction, but

alternate regions may have different sections or regions protected by ECC. As

a result, customers need to design their firmware to accommodate these

differences between multiple vendors. This is an unnecessary overhead that

limits the flexibility of choosing different NAND vendors. However, if the ECC

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 8 / 18

Macronix Proprietary

function is performed from the host side, the system does not have to

consider these differences for each vendor. The host can support any

vendor's SPI-NAND device, as long as it provides the required minimum error

correction. With host-based ECC, this problem is eliminated.

3. SPI-NAND & ECC Engine Framework in Linux

3.1 Introduce the SPI-NAND & ECC Framework

The focus of this section is on the relationship between the generic ECC

framework and the SPI-NAND subsystem, and therefore the origin of the SPI-

NAND subsystem will be mentioned first.

Supporting for the SPI-NAND devices in Linux has been available since

v4.19, but only the on-die ECC engine was supported, others were not. Raw

NAND controllers usually integrated an ECC engine and controller's

driver embedded some code to enable/disable the ECC function. However,

SPI-NAND devices may not have an on-die ECC engine and must use an

external ECC engine in host side.

Although we have been seeing new high density NAND devices without

on-die ECC coming out. It needs more powerful computing power to carry out

longer bit error correction, it is best to offload to a dedicated hardware, but the

SPI-NAND subsystem is not yet ready for this.

To solve these situations, Macronix commissioned Miquèl Raynal

(Embedded Linux Engineer at Bootlin, also Linux MTD subsystem maintainer)

to proposal a series patch (Introduce the generic ECC engine abstraction) to

make things work, and the patch set has been accepted/merged in Linux

v5.11.

The generic ECC framework for NAND is almost completed, the

remaining is to proposal of a driver for Macronix's external hardware ECC

engine.

The design logic in the generic NAND ECC engine framework [5] (i.e.:

differences from before v5.11) is:

1. Use the common NAND core for all NAND devices (raw and SPI)

2. Create the ECC engine interface in drivers/mtd/nand/ecc.c

3. Make the two software engines (Hamming and BCH) generic by

https://lwn.net/Articles/821680/

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 9 / 18

Macronix Proprietary

moving them to drivers/mtd/nand/ecc-sw-*.c, and write the raw NAND

helper to use these two new engines

4. Using all the above ECC engines from the SPI-NAND layer (user can

now use soft BCH if no ECC engine is available).

5. Isolating the SPI-NAND on-die ECC engine in its own driver

6. Migrating the raw NAND core to make a proper use of these S/W ECC

engines

7. Deprecating in the raw NAND subsystem the interfaces used until now

3.2 Source Code Structure

This figure is the SPI-NAND & ECC framework code structure in Linux

kernel source folder (drivers/mtd/nand) [8], spi/ folder is containing SPI-NAND

drivers, raw/ folder is containing raw NAND (ONFI NAND). ECC framework

related files are ecc.c (generic NAND ECC engine abstraction layer, for SPI

and raw), ecc-sw-bch.c and ecc-sw-hamming.c (both are S/W ECC engine

implements). If there is a driver for the SPI host ECC engine, it should be

placed here, too.

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 10 / 18

Macronix Proprietary

In summary, adding the generic ECC framework to the NAND subsystem

is a generalization of the software ECC algorithm and related data structures

that were originally only available for the raw NAND controller driver. This

allows both SPI-NAND and raw NAND to share the NAND core, ECC related

initialization procedures, parameters of device tree and S/W ECC algorithm

implements.

3.3 Initialization flow of SPI-NAND + ECC framework

The process of probe, after adding the generic ECC framework, is

roughly the same as the general SPI-NAND one. Then it will initialize the ECC

engine related data structure and read the ECC related configuration settings

in the device tree (e.g. engine type, S/W ECC algorithm type, ECC step size,

ECC strength...), if the user does not specify the ECC engine type in the

device tree, it will be defaulted to on-die type.

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 11 / 18

Macronix Proprietary

The following is driver/mtd/nand/core.c: nanddev_get_ecc_engine(), it will

find and get a suitable ECC engine according device tree's related

configurations. It is also the entry point for various ECC engines, such as S/W

ECC, ON-DIE ECC or H/W ECC. But, currently there is no support for any of

them and Macronix is continuing to develop and verify our host-based H/W

ECC engine for SPI-NAND, and the driver will be upstream in Linux soon.

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 12 / 18

Macronix Proprietary

There are three configurations of ECC engines for SPI-NAND [5][7],

which are supported in the ECC framework (Macronix also provides those

solutions):

1. ECC engine is on-die.

• The ECC engine is inside the NAND's data access pipeline, on

the chip's side.

2. ECC engine is part of the SPI host controller.

• The ECC engine is inside the NAND's data access pipeline, on

the host controller's side.

3. ECC engine may be external.

• The ECC engine is outside the NAND's data access pipeline, it

may be a S/W ECC or SPI host controller embedded with a

H/W ECC engine.

We can according to the actual ECC software/hardware configuration, set

the parameters in device tree, the following are samples. (ECC framework's

ECC engine type default is the on-die, for which we don't need to set

anything.)

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 13 / 18

Macronix Proprietary

4. Evaluation

We will now verify that the SPI-NAND with generic ECC framework (we

use the S/W BCH ECC, step size is 512 bytes and strength is 8 bits) can be

used successfully.

4.1 Evaluation Environment

Our evaluation platform is Macronix PicoZed Carrier board & Zynq-7000

family SoC board with Macronix's SPI Host controller IP, and Macronix SPI-

NAND Flash chip (MX35LF2G14AC, without on-die ECC, 4-bit ECC/ 528B is

required), and Linux kernel v5.11.

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 14 / 18

Macronix Proprietary

Ensure that device tree's configuration is setting for S/W BCH (according

to the sample in the previous section), and the S/W ECC algorithm options

(Software Hamming ECC engine & Software BCH ECC engine) are enabled

in the kernel configuration.

4.2 Evaluation Method

We use mtd-utilts tools verify SPI-NAND with S/W (or H/W) ECC engine,

for example:

• nanddump

• It can show the main data and OOB area data of flash (with or

without ECC correction)

• nandtest

• NAND test tool, used to verify Erase/ Random Write/ Read-back

and compare data, and show the ECC correction message &

statistics results.

• nandbiterrs

• This tool is useful to test multi-bit unexpected bit-flips on a

NAND flash page, though the main purpose is to test ECC

engine controller/driver robustness.

• It has two ways to test: 1) artificially inserting bit errors until the

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 15 / 18

Macronix Proprietary

ECC fails, 2) re-writing the same pattern repeatedly until the

ECC fails.

4.3 Evaluation Results

1. nanddump

$> ./nanddump -n -p -l 2048 /dev/mtd00

This is nanddump's output of read operation after erase/write (random

pattern). This figure only shows a part of the whole contents (one page, 0x0-

0x7FF), upper is main data of page, lower is ECC bytes (total 52 bytes,

address: 0x12-0x63 in OOB area).

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 16 / 18

Macronix Proprietary

2. nandtest

$> ./nandtest /dev/mtd00

The nandtest used to verify erase/ random write/ read-back and compare

data, and show the ECC correction message & statistics results.

The logs show that 2-bit errors were detected/corrected in the E/W/R

testing of nandtest.

3. nandbiterrs

$> ./nandbiterrs -i /dev/mtd00

It artificially inserts 0~n bit errors until the ECC fails.

The logs show that nandbiterrs generates biterrors from 0 to 9 bits, but it

can only correct up to 8 bits of errors. (Because we are using 8-bit S/W BCH)

PS: There is a bug in the logic of ECC correction counting in S/W ECC

engines (It already be fixed in v5.13), for the sake of good looks, first replace

the result with Macronix's H/W ECC engine. (Only the number of bit errors is

different)

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 17 / 18

Macronix Proprietary

5. Conclusion

There are two ways to implement ECC function for SPI-NAND, Macronix

believes that host-based ECC offers greater flexibility and advantages to our

customers than on-die ECC. Some of these advantages [1][3] are as follows:

• Lower system cost:

There's a huge cost savings moving from SPI-NOR to SPI-NAND.

However, in this article, we discuss the added cost savings from

removing the on-die ECC from the NAND die. The cost savings will

more than offset the minor cost increase in the host-based IC.

• Increased performance:

About 1.9X throughput improvement over on-die ECC engine

• Extended product life time:

REV. 1, July. 19, 2021 P/N: AN0862

 Application Note

 18 / 18

Macronix Proprietary

Host-side ECC engines can use greater ECC strength to extend

NAND lifetime

So, Macronix thinks the host to handle the ECC function is the right long-

term way.

6. Reference

1. Psyche's presentation: https://youtu.be/9jpOZMYXYR0, PDF

2. Macronix's doc: Booting from NAND Flash Memory

3. Jim's article: Improving Performance, Reducing Cost Through Host-

Based ECC

4. Miquel's NAND slides: https://elinux.org/images/3/3d/Raynal-

understand-and-drive-your-nand.pdf

5. Miquel's ECC engine series patch message: Introduce the generic ECC

engine abstraction

6. Miquel's ECC engine presentation:

https://www.youtube.com/watch?v=kLzDbNUHPWg

7. Miquel's ECC engine ppt:

https://bootlin.com/pub/conferences/2020/elce/raynal-ecc-

engines/raynal-ecc-engines.pdf

8. Linux source code:

https://github.com/torvalds/linux/tree/master/drivers/mtd/nand

Revision History

Revision No. Descriptio
n

Page D
a
t
e

Rev. 1.0

Initial Release

ALL

July 19, 2021

https://youtu.be/9jpOZMYXYR0
http://192.168.168.120:8080/xwiki/wiki/mp600/download/System%20Team/Weekly%20reports/2021/YCLin/Application%20Notes/SPI-NAND%20with%20ECC%20Engine/WebHome/Advantages%20of%20Host%20handling%20ECC%20for%20SPI%20NAND-V7a.pdf?rev=1.1
https://www.macronix.com/Lists/ApplicationNote/Attachments/1908/AN0270V1-Booting%20from%20NAND%20App%20Note-1212-new.pdf
https://elinux.org/images/3/3d/Raynal-understand-and-drive-your-nand.pdf
https://elinux.org/images/3/3d/Raynal-understand-and-drive-your-nand.pdf
https://lwn.net/Articles/821680/
https://lwn.net/Articles/821680/
https://www.youtube.com/watch?v=kLzDbNUHPWg
https://bootlin.com/pub/conferences/2020/elce/raynal-ecc-engines/raynal-ecc-engines.pdf
https://bootlin.com/pub/conferences/2020/elce/raynal-ecc-engines/raynal-ecc-engines.pdf
https://github.com/torvalds/linux/tree/master/drivers/mtd/nand

